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Abstract

Prefrontal cortex exerts control over sensory and motor systems via cross-frequency coupling. However, it is unknown
whether these signals play a role in reward-based decision-making and whether such dynamic network configuration is
altered in a major depressive episode. We recruited men and women with and without depression to perform a streamlined
version of the Expenditure of Effort for Reward Task during recording of electroencephalography. Goal-directed behavior
was quantified as willingness to exert physical effort to obtain reward, and reward-evaluation was the degree to which the
decision to exert effort was modulated by incentive level. We found that the amplitude of frontal-midline theta oscillations
was greatest in participants with the greatest reward-evaluation. Furthermore, coupling between frontal theta phase and
parieto-occipital gamma amplitude was positively correlated with reward-evaluation. In addition, goal-directed behavior
was positively correlated with coupling between frontal delta phase to motor beta amplitude. Finally, we performed a factor
analysis to derive 2 symptom dimensions and found that mood symptoms positively tracked with reward-evaluation and
motivation symptoms negatively tracked with goal-directed behavior. Altogether, these results provide evidence that 2
aspects of reward-based decision-making are instantiated by different modes of prefrontal top–down control and are
modulated in different symptom dimensions of depression.
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Introduction
Neural oscillations are a fundamental mechanism for inter-
regional communication (Fries 2015), with low-frequency
oscillations facilitating long-distance communication and high-
frequency enhancing local functional connectivity (Von Stein
and Sarnthein 2000). Cross-frequency coupling is proposed to
be a mechanism for low-frequency oscillations in prefrontal
cortex to exert top–down control over posterior cortex (Canolty

and Knight 2010, Voytek et al. 2010, Voytek, Kayser et al. 2015,
Helfrich et al. 2017, Berger et al. 2019, Riddle et al. 2021). Two
prominent cross-frequency coupling signals are theta–gamma
phase-amplitude coupling (PAC), in which theta oscillations
(4–7 Hz) originating in prefrontal cortex couple to gamma
oscillations (30–60 Hz) in parieto-occipital cortex to facilitate
perception and memory (Heusser et al. 2016, Bahramisharif et al.
2018, Berger et al. 2019, Riddle et al. 2020, Riddle, Vogelsang
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et al. 2021), and delta–beta PAC, in which delta oscillations
(2–4 Hz) in prefrontal cortex couple to beta oscillations (12-
30 Hz) in premotor/motor cortex to guide decision-making
(Wyart et al. 2012, Riddle et al. 2020, Riddle, Vogelsang et al.
2021). These multiscale temporal interactions are prominent in
the electroencephalogram (EEG) during cognitive control tasks;
however, whether these coupling relationships are recruited in
reward-based decision-making is currently unknown.

Previous evidence suggests that reward-based decision-
making may recruit similar processes as cognitive control tasks
(Ridderinkhof et al. 2004; Kool et al. 2017). First, participants
must evaluate a stimulus and determine its rewarding value
(O’doherty 2004). Incentives recruit perceptual and memory
processes in order to contextualize and interpret the signifi-
cance of a stimulus in addition to recruiting reward-sensitive
regions such as ventral striatum, medial prefrontal cortex, and
orbitofrontal cortex (Thut et al. 1997; O’doherty 2004; Adcock
et al. 2006). Thus, we hypothesized that theta–gamma coupling
would be present during reward-evaluation (Glazer et al. 2018),
similar to tasks that require active processing of higher order
visual stimuli (Sauseng et al. 2005; Sauseng et al. 2009). Second,
participants are faced with a decision between competing
options. In the streamlined version of the Expenditure of Effort
for Reward Task (S-EEfRT), as was used in our experiment,
participants must either perform a more physically exhausting
task for a chance at a higher reward, or an easier task for a
chance at a lower reward (Treadway et al. 2009). The decision-
process was hypothesized to recruit top–down control over the
motor system in the form of delta–beta coupling similar to
previous experiments that found delta–beta coupling during
decision-making (Wyart et al. 2012, Riddle, Vogelsang et al. 2020,
Riddle et al. 2021). In the S-EEfRT, goal-directed behavior was
quantified as the willingness to perform the more physically
demanding task, and we hypothesized that delta–beta coupling
would be present during decision-making.

A better understanding of the biological basis of control
signals in reward-based decision-making may lend insight into
the neural basis of depression, as goal-directed behavior and
reward-evaluation are known to be altered with symptom sever-
ity (Nusslock and Alloy 2017). Previous research has found that
symptoms of anhedonia, a lack of pleasure, display an inverse
relationship to goal-directed behavior: participants with anhe-
donia are less motivated to exert effort (Treadway et al. 2009;
Treadway and Zald 2011; Treadway et al. 2012). Second, patients
with depression sometimes display comorbid anxiety. Symp-
toms of anxiety within depression have been found to display
a positive relationship with risk-aversion: anxious participants
are more careful to evaluate rewards and more strategically
exert effort (Giorgetta et al. 2012; Cavanagh and Shackman 2015).
Thus, our study included participants in a major depressive
episode (MDE) to generate a wide distribution of goal-directed
behavior and reward-evaluation for brain-behavior individual
differences analysis. Then, these top–down control signals were
investigated within the context of symptom presentation.

Categorical approaches to classifying depression are likely
limited in their ability to yield effective biomarkers (Young et al.
2016; Kennis et al. 2020) (but see elevated frontal theta amplitude
in treatment-resistant depression (Arns et al. 2015)), and so a
dimensional approach was used that conceptualizes depression
as multidimensional symptoms along a continuum (Insel et al.
2010; Nusslock and Alloy 2017). We used a factor analysis to
derive symptom dimensions of depression based on recent
evidence that found that anhedonia and anxiety were most

predictive of individual differences in network-scale neural
activity (Drysdale et al. 2017). Classification along anhedonia
and anxiety dimensions of depression was predictive of
the region most effectively targeted by noninvasive brain
stimulation for treatment-resistant depression (Siddiqi et al.
2020). Using factor analysis, we derived 2 symptom dimensions
and ran an individual differences analysis to understand
whether goal-directed behavior and reward-evaluation related
to symptom dimension.

Materials and Methods
The experiment was approved by the Institutional Review Board
at the University of North Carolina at Chapel Hill. Participants
were recruited from the Raleigh-Durham-Chapel Hill area and
provided written consent before participation. The experiment
was conducted in the Carolina Center for Neurostimulation.
The data for this study were collected within the context of a
different experiment (National Clinical Trial 03449979).

Participants

After completing a brief phone screening, 112 participants were
enrolled in the experiment. To ensure a spread of symptom
severity for individual differences analysis, half of the partici-
pants were screened to be diagnosed with a current MDE using
the Mini International Neuropsychiatric Interview (MINI) for
the DSM-5 and a Hamilton Depression Rating Scale (HAM-D)
of at least 8. The MINI has been shown to be comparable to
the full Structured Clinical Interview for DSM Disorder (SCID)
for the diagnosis of mood disorders (Wu et al. 2020). Inclusion
criteria for all individuals were ages 18–65 years, a negative
pregnancy test for female participants, normal or corrected-to-
normal vision, and a negative drug test for all participants. For
all participants, our exclusion criteria was as follows: at most
moderate suicidality as determined by the MINI and less than
3 on the suicidality metric of the HAM-D, neurological illness
or first degree relative with neurological illness, history of trau-
matic brain injury, prior brain surgery, any implanted devices,
pregnant or nursing females, current use of benzodiazepines
or antiepileptic drugs, non-English speaking, MINI diagnosis of
substance use disorder within the last 12 months, substance use
within the last 12 months (other than nicotine or cannabis, but
note that participants were required to pass a urine drug test on
the day of the experiment), eating disorder (current or within the
past 3 months), comorbid neurological conditions. Participants
were not excluded on the basis of medication use (except those
that have robust effect on the EEG, see above) or psychotherapy.
For the 50% of participants without a current MDE, exclusion
criteria were a history of psychiatric illness, medication use
associated with neurological or psychiatric illness, currently
undergoing counseling or psychotherapy treatment for depres-
sion, anxiety, eating disorders, post-traumatic stress disorder or
other behavioral conditions, and first degree relative with major
neurological or psychiatric illness.

After determining eligibility, 87 participants began the
experiment. Four participants did not complete the experiment
because 1 participant fell asleep during the task, 1 participant
experienced mild anxiety during the task, a technical difficulty
occurred for 1 participant, and 1 participant left the experiment
due to unrelated nausea. One participant was not included
based on age and sex matching criteria for the parent study.
Thus, the analysis was run on 82 participants in total (66 women,

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab336/6382419 by U

niversity of N
orth C

arolina at C
hapel H

ill H
ealth Sciences Library user on 08 O

ctober 2021



Cross-Frequency Coupling in Decision-Making Riddle et al. 3

18–64 years old, 27.80 ± 11.79). After data collection, we investi-
gated the distribution of depression severity (HAM-D) across all
participants and discovered a bimodal distribution in depression
severity with an inflection point at 11.5 upon 2 Gaussian-fit. To
most accurately represent our study population, we included a
table that compared all clinical assessments, demographics, and
behavioral metrics between participants with none-to-minimal
symptoms of depression and those with mild-to-moderate
symptoms of depression (Supplementary Table S1).

Streamlined Expenditure of Effort for Reward Task

Participants performed a S-EEfRT (Treadway et al. 2009). To begin,
participants were comfortably seated with their chin in a chin-
rest and with their fingers on the “home row” of a keyboard.
The center of the LCD monitor was 66 cm from the nasion, and
the screen was 53 cm from left to right. The refresh rate of the
monitor was set to 60 Hz and a redundant system of digital
triggers and a photodiode was used to synchronize the EEG to
the behavioral task. The S-EEfRT script is available on the Open
Science Framework (https://osf.io/yk6ts/). The task was run on
a PC using MatLab2015A and Psychtoolbox version 3 (Brainard
1997; Pelli 1997; Kleiner et al. 2007).

At the start of the experiment, the physical difficulty of the
S-EEfRT was titrated to the physical abilities of the participant.
Our titration procedure consisted of 2 runs: a practice run and
a test run. In each run, the participant pressed a key with their
dominant index finger as fast as possible for 7 s. There was a
half second countdown before each run and a 2-second break
between runs. The first run was considered practice and was
ignored. The number of button presses in the last 5 s of the
second run was used in the subsequent experiment. The first 2 s
of the second run were ignored to account for variable reaction
time to the start signal. If the number of button presses appeared
anomalous to the experimenters (∼3 standard deviations from
the average), then the titration procedure was repeated. The
average number of button presses determined from titration
was 28.43 with a standard deviation of 3.59. After completion of
the titration procedure, participants performed an abbreviated
practice block of 5 trials to confirm proper understanding of the
task instructions. Then, each participant completed 12 blocks of
8 trials each for a total of 96 trials.

Each trial of the S-EEfRT consisted of 5 epochs: decision,
countdown, effort exertion, fixation, and reward. In the deci-
sion epoch, participants were presented with an incentive level,
$2.50–$6.00 in $0.50 increments, that was offered for perfor-
mance of a physically demanding effort exertion. This “HARD”
task required a button to be pressed with the pinky finger for
5 s at 70% of the titration value. Alternatively, participants could
choose to perform the “EASY” task at a fixed rate of $1.00 that
required fewer button presses (40% of the titration value) and
was performed with the index finger. Thus, the EASY task was
significantly easier for participants by virtue of reduced button
presses and the use of the index finger with stronger muscles
than those of the pinky in the average participant. Participants
knew that the reward for the EASY task was fixed at $1.00, so
only the incentive for the HARD task was presented at fixation
during the decision epoch. This removed the need for eye move-
ments during the decision epoch for artifact-free EEG analysis.
The incentive was randomized and counterbalanced such that
50% of the trials were randomly sampled from $2.50 to $4.00 and
50% were sampled from $4.50 to $6.00. With 96 trials total, 48
trials were a high incentive and 48 were a low incentive. This

binarization provided sufficient power in each condition for the
sake of EEG analysis (see (Nee 2019) for a similar discussion).

For each of the 12 blocks, participants performed the task
with a single hand that was randomized and counterbalanced.
Participants were informed of the relevant hand at the start
of each block and initiated the block by using that hand. The
use of each hand was counterbalanced such that EEG analysis
would not display a bias towards one hemisphere based on
motor activity. Participants responded with a button press to
indicate whether they wished to perform the EASY or HARD
task. The button pressed corresponded to the finger and button
that would need to be used in the effortful exertion phase. Thus,
this method for responding was intuitive. To choose the HARD
task, participants pressed the “a” or “;” key with their pinky
finger depending on the hand required for this block. To choose
the EASY task, participants pressed the “f” or “j” key with their
index finger. Participants were given 3 s to make a response,
otherwise, the EASY task was automatically selected. Trials in
which participants failed to make a decision were removed from
analysis. The average number of nondecision trials was 0.60
with a standard deviation of 0.82. The average reaction time was
748.6 ms with a standard deviation of 167.1 ms.

After the decision epoch, the countdown epoch consisted of
a countdown from 3 that lasted for 1 s and comprised a number
at fixation for 0.333 s per number. For the effort exertion epoch, a
vertical-oriented outline of a rectangle was presented at fixation
with 1-degree visual angle in width and 5-degree visual angle
in height. The number of button presses required for the effort
exertion task was 40% of the titration count, rounded up, for
the EASY task (mean 11.37, std 1.48) and 70% of the titration
count, rounded up, for the HARD task (mean 20.04, std 2.42).
Participants were given 5 s to complete the effort exertion task
and were provided with visual feedback of their progress, as each
subsequent button press filled the black outlined rectangle with
white space until it was entirely white. Once the bar was entirely
filled, the outline of the rectangle increased in width to indicate
successful completion.

During piloting of the experiment, participants could raise
their hand to be perpendicular to the keyboard. This alignment
shifts the physical strain of the task from the finger muscles to
the wrist and arm, which required considerably less effort and
reduced the contrast between the EASY and HARD task. Thus,
we placed a weight (a bag of rice) across the wrists of the partic-
ipants as a tactile reminder and enforcement that they must use
only their finger muscles to complete the effort exertion task.

After the effort exertion epoch, there was a 0.5 s fixation
period. This period was included to reduce the residual strain
from physical exertion and to encourage a return to fixation. If
the participant was successful in the exertion epoch, then the
reward epoch consisted of a single word and dollar value: either
“WIN” or “LOSE” and the dollar amount awarded. The probability
of receiving the reward was fixed at 50% probability. Previous
research using this task used multiple levels of probability of
reward, and investigators found that only when the reward was
uncertain (50% chance) was there a relationship between goal-
directed behavior (the percentage of trials that the participant
chose the HARD task) and symptoms of anhedonia (Treadway
et al. 2009). Thus, we reduced the number of conditions from the
original task by only including an uncertain reward. If the partic-
ipant failed to make enough button presses in the effort exertion
epoch, then the word “FAIL” was presented. The percentage
of failed trials was greater for the HARD task (mean 3.63%,
std 5.02%) relative to the EASY task (mean 0.14%, std 0.58%;
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pair-wise Student’s, t(52) = 4.973, P = 7.560e−06, d = 0.683). Thus,
the decision to perform the HARD task required participants to
exert significantly more effort, as some attempts failed. Partici-
pants passively viewed the reward stimuli for 3 s. Between trials
there was a 2–5 s intertrial interval such that the start of the deci-
sion epoch was unpredictable and sampled in an exponentially
decaying distribution to reduce the average time of the interval.

After completion of the study, we calculated 2 behavioral
metrics relevant to reward-based decision-making: goal-
directed behavior and reward-evaluation. Due to various
technical difficulties, 3 participants did not have usable
behavioral data (analyzed S-EEfRT dataset was N = 79). Goal-
directed behavior was calculated as the percentage of trials
in which participants chose the HARD task, a metric that was
previously shown to negatively relate to symptoms of anhedonia
(Treadway et al. 2009). Reward-evaluation was calculated as the
slope of the linear fit of percent HARD as a function of the
monetary value of the incentive.

Given our titration procedure, participants needed to con-
serve their physical energy in order to employ an optimal strat-
egy by choosing the HARD task sparingly. Despite the titration
procedure, a subset of participants did not engage with the
incentive stimulus in order to decide between the HARD and
EASY task and chose the HARD task every or nearly every time
(>85%; Fig. 1B). Although our titration procedure was gener-
ally successful with at least one HARD task failure in >50%
of participants, increased task difficulty may be required to
engage reward-based decision-making in every participant. As
the goal of the experiment was to investigate reward-based
decision-making, these participants that only rarely chose the
EASY task were excluded from behavioral and neural analyses.
Excluding participants that performed at ceiling is common
practice in cognitive neuroscience as both of our behavioral
metrics in these participants were unlikely to capture mean-
ingful individual differences. The threshold of 85% was cho-
sen based on the inflection point of the bimodal distribution
in goal-directed behavior, leaving 53 participants in the final
analysis (Fig. 1B). There were no significant differences between
these groups in terms of depression symptoms or demographics
(Supplementary Table S2). Future studies could employ a more
dynamic incentive structure or employ a real-time adaptation
system in which the difficulty of the task is increased upon
consecutive decisions to perform the HARD task.

Neural Correlates of Reward-Based Decision-Making

The neural correlates of goal-directed behavior and reward-
evaluation were investigated using EEG during S-EEfRT perfor-
mance. EEG data were collected with a high-density 128-channel
electrode net at 1000 Hz (HydroCel Geodesic Sensor Net) and EGI
system (NetAmps 410, Electrical Geodesics Inc., OR, USA). The
impedance of each electrode was below 50 kΩ at the start of
each session. The study in which this experiment was embed-
ded used transcranial alternating current stimulation (tACS),
which applied 3 conductive electrodes of sizes 5 by 5 cm to
F3 and F4 and 5 by 7 cm to Cz. Thus, electrodes around these
regions were bridged. The Cz electrode, which served as the
reference electrode in the EGI system, was placed directly on
the scalp via a hole cut in the stimulation electrode surrounding
Cz. The entirety of this experiment was collected prior to any
noninvasive brain stimulation.

Data were preprocessed using the EEGLAB toolbox in MAT-
LAB. We applied a high pass filter of 1 Hz and a low pass filter

at 58 Hz. Thus, 58 Hz set the upper boundary for analysis of
gamma frequency activity (35–58 Hz). Data were downsampled
from 1000 Hz to 200 Hz. Data from 0.5 prior and 3 s after the start
of the decision epoch and reward epoch were extracted. Data
were then manually inspected and trials corrupted with noise
were rejected from future analysis (6 trials in 1 participant and
1 trial in another participant). The data were then cleaned using
an artifact subspace reconstruction algorithm to remove high-
variance signal using default parameters in the EEGLAB toolbox
(Mullen et al. 2013). This algorithm also flagged noisy chan-
nels which were then replaced with a spherical interpolation
from its neighboring channels. Global average re-referencing
was applied, which is an approximate solution for the spherical
electrical field assumption that was enabled by use of a 128-
channel system that includes electrode coverage on the face and
neck. Principal component analysis was run based on the rank of
the data matrix to optimize the data for artifact rejection using
info-max independent component analysis. All independent
components were visually inspected and components that cor-
responded to line noise, muscle activity, eye movement, blinks,
and heart beat were removed from the data.

Data were extracted locked to the onset of the decision
epoch and baseline-corrected from −400 to −200 ms in the
time-domain. Five-cycle Morlet wavelets were convolved with
the decision epoch for 2–58 Hz in an adjusted log distribution,
with 150 frequencies evenly spaced according to Equation 1 that
approximates the power distribution of human brain activity
(Voytek, Kramer et al. 2015).

pwr = 1
/

freq0.05 (1)

EEG data were mirrored prior to wavelet convolution to reduce
edge artifacts, then the trial averaged data for each condition
was baseline-corrected to −400 ms to −200 ms from the decision
epoch in the frequency domain. Evoked neural oscillations in
the decision epoch were correlated with goal-directed behavior
and reward-evaluation. To reduce comparisons, the analysis was
investigated in electrodes over the anterior prefrontal cortex
(aPFC), defined as Fz and its adjacent electrodes, using a Pearson
correlation. Electrodes over a region of the brain do not necessar-
ily reflect signal from only that region; nonetheless, we refer to
subsets of electrodes with reference to the cortex most directly
underneath, for example, prefrontal electrodes. The significance
threshold was P < 0.05 with a minimum cluster size of 2000
pixels and permutation-based cluster correction using mass on
1000 iterations corrected for multiple comparisons (previously
described (Riddle, Vogelsang et al. 2020)). In addition, a topo-
graphic analysis was performed in order to define a region of
interest that would be used in PAC analysis. If no evoked neural
oscillation could be localized, then the aPFC was used for PAC
analysis.

We hypothesized distinct time-windows within the deci-
sion epoch: an initial stimulus-processing period in roughly
the first 500 ms (100–600 ms after incentive onset), and a
decision-making period for roughly 1.5 s (100–1500 ms after
incentive onset). A priori, we were interested in the role of
theta oscillations (4–7 Hz) in the prefrontal cortex during the
stimulus-processing period (Cavanagh and Frank 2014) and
delta oscillations (2–4 Hz) in the prefrontal cortex during the
decision-making period (Riddle, Vogelsang et al. 2020, Riddle
et al. 2021). Topographic PAC analysis was run between the
phase of delta-frequency oscillations in prefrontal electrodes
and the amplitude of beta oscillations across the scalp during
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Figure 1. Streamlined Expenditure of Effort for Reward Task (S-EEfRT). (A) The task consisted of 5 epochs. Participants decided between performing a HARD task with
a high or low incentive (presented) or an EASY task with a minimal incentive (fixed and not presented). After a countdown, participants pressed a button with their

pinky finger at 70% of their maximum rate for the HARD task or index finger at 40% for the EASY task. After a brief fixation, participants received notification of a
probabilistic monetary reward. (B) Histogram of goal-directed behavior (N = 79) revealed a bimodal distribution bisected at 85% (dashed red vertical line). Mean and
standard deviation for participants that engaged reward-based decision-making (black; N = 53) and those with performance at ceiling (red; N = 26). Gaussian curves
are superimposed on the histogram for visualization purposes only and do not represent fitted data. (C) Reward-evaluation was quantified as the slope of a linear

fit between the percent HARD decision and the incentive level. Error bars are within-participant standard error of mean. (D) Goal-directed behavior and reward-
evaluation showed a low correlation value (Pearson, N = 53) suggesting that the behavioral metrics were dissociable. A dashed line is P > 0.05. Shaded area is 95%
confidence interval.

the decision-making window; and between the phase of theta-
frequency oscillations in the prefrontal electrodes and the
amplitude of gamma oscillations across the scalp during the
stimulus-processing window. The change in PAC strength was
investigated by incentive level: high versus low incentive using
pair-wise Student’s t-test and a cluster correction of 3 contigu-
ous electrodes. In addition, the frequency-specificity of cross-
frequency coupling was investigated using a comodulogram of
all possible frequency pairs.

PAC was calculated using phase and amplitude values
derived from Hilbert transform of band-filtered data for topo-
graphic analysis and derived from 5-cycle Morlet wavelet con-
volution of all frequency pairs in an exhaustive comodulogram.
Task-based PAC was restricted to trials in which participants
made a decision (>99% of trials). Low and high incentive trials
were calculated separately (48 trials per condition per partici-
pant). For each participant, phase (θ ) and amplitude (M) values
of each trial for the time-window of interest were concatenated
into a single continuous time series (n is the number of time
points) and PAC was calculated according to Equation 2.

PAC =
∣∣∣∣∣
∑n

t=1 M ∗ eiθ

n

∣∣∣∣∣ (2)

PAC values were normalized based on a null distribution
generated by temporally shifting the amplitude values with a

random temporal offset of at least 10% the length of the time
series. After 1000 repetitions, PAC was converted to a z-score
from the null distribution, resulting in PACZ. This method,
“mean vector length”, was selected as it is the most robust
to noise with sufficient trial count per condition as in our
experiment (Hülsemann et al. 2019). Genuine PAC can only be
positive. Thus, analyses of a single condition were investigated
using one-tailed tests and differences between conditions
were investigated with two-tailed test. Permutation-based
cluster correction for mass was used to test for significance
at a threshold of P < 0.05 with a minimum cluster size of 300
(previously described (Riddle, Vogelsang et al. 2020)).

Quantifying Dimensions of Depression

To assess symptoms of depression, a factor analysis was run
with 2 factors on 16 subscores in participants that present with
mild-to-moderate depression (current MDE diagnosis and HAM-
D ≥ 12, N = 38). We focused on these participants to derive the
factors, as these participants were most likely to display the rel-
evant symptom dimension of depression. We hypothesized that
factor analysis would yield composite metrics for motivation
(encompassing anhedonia) and mood (encompassing anxiety).
A subscore was included in a composite metric if its loading
was greater than 0.316 (10% explained variance) and then z-
normalized across participants and summed. Multiple linear
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regression analyses were run with the composite metrics as
independent variables and the behavioral factors as dependent
variables.

Clinician-administered assessments were the Snaith-
Hamilton pleasure scale (SHAPS-C) for anhedonia (Ameli et al.
2014), HAM-D for overall symptoms of depression (Williams
1988), and MINI for current MDE diagnosis and exclusion criteria
(Sheehan et al. 1998). The SHAPS-C was included, as the study
that developed the EEfRT found a negative relationship between
symptoms of anhedonia and goal-directed behavior (Treadway
et al. 2009). Thus, this assessment was used in an exploratory
analysis to quantify the anhedonia dimension of depression.
The HAM-D is considered a robust quantification for overall
depression severity; thus, the HAM-D was used as a covariate
in our exploratory analyses. The MINI is robust in diagnosing
current MDE and produces multiple diagnostic categories for
each participant when applicable. In an exploratory analysis,
we investigated differences in brain-behavior correlations
between groups categorized by diagnosis: no MDE, current
MDE, and current MDE with an anxiety disorder (generalized
anxiety disorder, panic disorder, agoraphobia, or social anxiety
disorder).

Self-report assessments were the Temporal Experience of
Pleasure Scale (TEPS) for the anticipation and consumption of
pleasure experiences (Gard et al. 2006), Ruminative Responses
Scale (RRS) for depressive rumination (Nolen-Hoeksema 1991),
State and Trait Anxiety Inventory with subscores for state
anxiety (STAI-Y1) and trait anxiety (STAI-Y2; Spielberger 2010),
Behavioral-Inhibition and Behavioral-Activation Scale (BIS/BAS)
with a single score for BIS and 3 components of BAS (drive,
fun-seeking, and reward responsiveness; Carver and White
1994), positive and negative affect schedule (PANAS) for current
positive and negative affect (Watson et al. 1988), and Beck’s
depression inventory (BDI-II) for depression severity (Beck et al.
1996). For our 2D factor analysis, we collected assessments
that addressed a similar construct in order to increase the
validity of our composite metric: the TEPS and BAS subscores
for motivation symptoms and the RRS and STAI for mood
symptoms. The STAI-Y2 was hypothesized to most closely
approximate the anxiety dimension of depression and was
used in a hypothesis-motivated analysis of the relationship
between specific symptoms with key neural and behavioral
metrics.

The 2 dimensions of interest, motivation and mood, were
conflated in the clinician-administered assessment of depres-
sion, HAM-D, and in the self-report assessment of depression,
BDI-II. Previous studies found that symptoms of anhedonia were
best captured by items #7 (work and interests) and #8 (physical
slowness) of the HAM-D (Drysdale et al. 2017) and items #4 (loss
of pleasure), #12 (loss of interest), #15 (loss of energy), and #21
(loss of sex drive) of the BDI-II (Pizzagalli et al. 2005). Symp-
toms of anxiety in depression were best captured by items #4
(insomnia early), #5 (insomnia middle), and #11 (anxiosomatic)
of the HAM-D (Drysdale et al. 2017). A factor analysis was run on
the HAM-D and BDI-II to validate previous findings of separable
dimensions within these assessments and to isolate separate
components related to motivation (encompassing anhedonia)
and other mood-related components (encompassing anxiety).
A single participant was missing a single item of the HAM-D.
This item was replaced with the group average. For the HAM-D,
a four-factor analysis revealed an anhedonia and anxiety factor
with loadings that aligned with the predicted loadings from
Drysdale et al. (2017; Supplementary Fig. S4A). Drysdale et al.

(2017) used a large dataset of 1188 depressed participants to
derive their loadings, so we used the factor loadings from their
analysis after confirming their presence within our dataset. Each
item in the HAM-D was normalized from 0 to 1 and the dot
product with the loadings served as the subscore. For the BDI-II,
a three-factor analysis revealed a factor that aligned well with
the predicted anhedonia metric (Supplementary Fig. S4B). Thus,
the sum of these 4 items, as used in previous literature (Pizzagalli
et al. 2005), was used as the anhedonia subscore. In addition,
we created a post hoc subscore for mood from the BDI-II factor
analysis by summing items that showed a loading of at least 0.4
and a difference from the other two factors by at least 0.2: items
#1, #2, #3, #5, #6, #7, #10, #13, #14, and #17.

Results
Streamlined Expenditure of Effort for Reward Task

The distribution of goal-directed behavior across participants
with S-EEfRT data (N = 79) was bimodal, with a fraction of
participants that did not engage reward-based decision-making
(Fig. 1B). Participants with performance at ceiling were unlikely
to meaningfully contribute to individual differences analysis.
Thus, all analyses of behavior and neural activity were restricted
to participants that chose HARD on fewer than 85% of trials
(N = 53, 61.24 ± 13.97%). There was no significant difference in
symptom severity or demographics between these 2 groups
(Supplementary Table S2). In addition, we investigated the
degree to which a higher incentive increased the likelihood
of selecting HARD, reward-evaluation (15.11 ± 11.54% HARD per
dollar; Fig. 1C). Correlation analysis of individual differences
in goal-directed behavior (% HARD) and reward-evaluation
(slope [m] of linear fit) revealed no significant relationship
(r(51) = −0.003, P = 0.982; Fig. 1D). Therefore, goal-directed behav-
ior and reward-evaluation were dissociable components of
reward-based decision-making.

Amplitude of Neural Oscillations in Prefrontal Cortex

Following presentation of the incentive stimulus during the
decision epoch, an increase in the amplitude of theta oscilla-
tions in aPFC was observed in an early time-window and in
delta oscillations in a later time-window (Fig. 2A). To under-
stand whether the amplitude of oscillations in prefrontal cortex
related to goal-directed behavior or reward-evaluation, a correla-
tion analysis was run between individual differences in behavior
and spectral amplitude. For reward-evaluation, the amplitude
of theta oscillations (3–6 Hz) following stimulus presentation
(100–600 ms) positively correlated with reward-evaluation (Pear-
son; P < 0.05, permutation-based cluster correction; Fig. 2B). In a
topographic analysis, a significant positive relationship between
theta amplitude (canonical theta band, 4–7 Hz, from 100 ms to
600 ms after stimulus onset) and reward-evaluation was found
in electrodes from the frontal-midline (Fz) to the left lateral
(F3) frontal electrodes (Pearson; P < 0.05; at least 3 contiguous
electrodes; Fig. 2C). This region of interest, defined as left pre-
frontal cortex (L-PFC), was used in subsequent PAC analysis.
For goal-directed behavior, there was no significant relationship
with the amplitude of anterior prefrontal oscillations (Fig. 2D).
Frontal-midline theta is often reported with sufficiently com-
plex stimulus-processing (Cavanagh and Frank 2014) consistent
with incorporation of the incentive into decision-making.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab336/6382419 by U

niversity of N
orth C

arolina at C
hapel H

ill H
ealth Sciences Library user on 08 O

ctober 2021

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab336#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab336#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab336#supplementary-data


Cross-Frequency Coupling in Decision-Making Riddle et al. 7

Figure 2. Individual differences analysis of neural oscillations in prefrontal electrodes. (A) Time–frequency analysis of electrodes over anterior prefrontal cortex (aPFC),
defined as Fz and its adjacent electrodes (topographic insert), shows a significant increase in the amplitude of theta oscillations immediately following the presentation
of the incentive at time zero (black vertical line). N = 53. Thin gray outline is P < 0.0001 and permutation-based cluster correction. The early and late windows for analysis
are depicted with a black rectangle. Spectral amplitude (% from baseline) from 100 ms to 400 ms, early, shows a clear theta peak; and from 800 ms to 1500 ms, late, shows

a clear delta peak. Shaded area is standard error of mean. (B) Individual differences analysis of spectral amplitude in prefrontal electrodes with reward-evaluation
revealed a single significant cluster in the theta band (3–6 Hz). Black outline for significant time–frequency cluster. Asterisk represents P < 0.05 and permutation-based
cluster correction. (C) Topographic individual differences analysis of the canonical theta band (4–7 Hz) from 100 ms to 600 ms after stimulus presentation to reward-
evaluation found a significant positive correlation in frontal-midline, left lateral frontal, and posterior-midline electrodes. Dot represents P < 0.05 in topographic plots.

This analysis identified a region of interest, left prefrontal cortex (L-PFC) that was used for phase-amplitude coupling analysis (purple outline). aPFC is overlaid for
comparison. Electrodes from the 10–20 system are label in relevant regions. (D) An individual differences correlation analysis of the spectrogram in aPFC during the
decision epoch of the S-EEfRT with goal-directed behavior (%HARD) did not reveal any significant time–frequency clusters. n.s. is not significant.

Theta–Gamma Coupling Increased with
Reward-Evaluation

Theta–gamma PAC was proposed as a mechanism for prefrontal
control signals in theta range to modulate stimulus-driven
gamma oscillations (Berger et al. 2019). Thus, we estimated
PAC using the theta phase (3–6 Hz) of electrodes with a
significant relationship to reward-evaluation (L-PFC as depicted
in Figure 2C and includes Fz, F3, and Fp1) from 100 ms to
600 ms after stimulus presentation to the amplitude of gamma
oscillations (35–58 Hz) across the scalp. Theta–gamma coupling
was present from prefrontal to parieto-occipital electrodes for
the high-incentive condition (one-tail Student’s t-test; P < 0.05;
Fig. 3A). As gamma oscillations carry stimulus information
feed-forward towards higher cortical regions (Börgers and
Kopell 2008; Michalareas et al. 2016), these findings suggest
that prefrontal cortex provided control signals to guide
reward-evaluation similar to other cognitive control tasks

(Berger et al. 2019). Although there was no significant increase
in theta–gamma coupling as a function of incentive across par-
ticipants (Fig. 3B), individual differences in reward-evaluation
(Fig. 3C), but not goal-directed behavior (Fig. 3D), positively
correlated with theta–gamma coupling between prefrontal
and parieto-occipital electrodes (Pearson; P < 0.05). Participants
with the strongest top–down theta–gamma coupling during
early stimulus-processing incorporated incentive into their
decision-process.

Delta–Beta Coupling Increased with Goal-Directed
Behavior

Based on previous work of cross-frequency coupling in frontal
cortex (Wyart et al. 2012, Riddle, Vogelsang et al. 2020, Riddle
et al. 2021), delta–beta PAC increases between prefrontal delta
phase and motor beta amplitude. A time–frequency analysis of
the left motor cortex (L-MI) revealed a sustained decrease in
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8 Cerebral Cortex, 2021, Vol. 00, No. 00

Figure 3. Theta–gamma phase-amplitude coupling during reward-evaluation. The phase of theta oscillations (3–6 Hz, 100–600 ms after incentive presentation) was
estimated for the left prefrontal cortex (L-PFC) region of interest localized from time–frequency analysis (purple outline) and coupling was calculated to gamma

amplitude (35–58 Hz) across the scalp. (A) Theta–gamma phase-amplitude coupling (PAC) between L-PFC phase and posterior-midline electrodes was significantly
present in the high incentive condition. Black dot represents P < 0.05. (B) There was no region that displayed theta–gamma coupling as a function of incentive. Significant
region defined as a contiguous cluster of at least 3 electrodes at P < 0.05. (C) Theta–gamma PAC as a function of incentive level (high minus low) was positively correlated
with reward-evaluation between L-PFC and right parieto-occipital electrodes (R-ParOcc; dashed circle is post hoc significant region). (D) There was no relationship

between theta–gamma PAC and goal-directed behavior. n.s. is not significant. Electrodes from the 10–20 system in relevant regions are labeled.

beta-frequency amplitude consistent with a disinhibition of the
motor system during decision-making (Fig. 4A). A topographic
analysis of beta amplitude during the decision epoch revealed
the canonical pattern that left and right motor cortex showed
focal beta modulation (Fig. 4B). A PAC analysis was run between
the phase of low-frequency oscillations in the aPFC and the
amplitude of high-frequency oscillations in the L-M1 during
the decision-making period (100–1500 ms after presentation of
incentive). This analysis found significant coupling between
the phase of delta (2–4 Hz) and amplitude of beta (15–30 Hz)
oscillations (P < 0.05, permutation-based cluster correction) with
high incentive (Fig. 4C), but not low incentive (Fig. 4D). The con-
trast of high versus low incentive across the scalp revealed a
selective increase in coupling between prefrontal cortex (aPFC)

and beta amplitude over left L-M1 and posterior-midline (Pz and
posterior electrodes; Fig. 4E). An individual difference analysis
found that the strength of delta–beta coupling from aPFC to L-
M1 was positively correlated to individual differences in goal-
directed behavior (r(51) = 0.510, P = 0.000097; Fig. 4F), but not to
reward-evaluation (r(51) = 0.007, P = 0.960).

Critically, delta–beta coupling did not increase locally within
motor cortex (Supplementary Fig. S1A and B), nor did it increase
locally within prefrontal cortex (Supplementary Fig. S2A and B).
Although we found increased coupling between delta and the
mu-rhythm (10–20 Hz) locally in prefrontal cortex, this activ-
ity was not related to goal-directed behavior (Supplementary
Fig. S2C and D). Delta–mu coupling between prefrontal and
motor cortex was numerically weaker than delta–beta coupling
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Cross-Frequency Coupling in Decision-Making Riddle et al. 9

Figure 4. Delta–beta coupling during decision-making. (A) Electrodes over left motor cortex (L-M1), defined a priori as C3 and its adjacent electrodes (see insert),

displayed a prolonged modulation of beta amplitude (15–30 Hz). All conditions, N = 53. Vertical line at 0 ms is presentation of the incentive stimulus. Outlined square
highlights the a priori time-window analyzed by delta–beta phase-amplitude coupling (PAC) analysis (100–1500 ms after decision epoch onset) and the range of the
beta band (15–25 Hz). Thin gray outline is P < 0.0001 and permutation-based cluster correction. (B) The topography of beta modulation after spatial normalization was

concentrated to the left and right motor cortex (black circles). L-M1 region is depicted. Electrodes from the 10–20 system are labeled. (C) With a high incentive, delta
phase in anterior prefrontal cortex electrodes (aPFC; depicted; Fz and its adjacent electrodes) was coupled with beta amplitude in L-M1 during the decision period.
Outline was significant at P < 0.05 and permutation-based cluster correction. (D) With a low incentive for the HARD task, delta–beta coupling between aPFC and L-M1 did
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10 Cerebral Cortex, 2021, Vol. 00, No. 00

suggesting that these effects are explained by their overlap
in frequency domain (Supplementary Fig. S2E and F). Finally, we
found that delta–beta coupling was present between prefrontal
cortex and the right motor cortex (Supplementary Fig. S3A and
B), but this activity was not modulated as a function of incentive
level (Fig. 4E), nor was it correlated with goal-directed behavior
(Fig. 4F). We speculate that task-modulated delta–beta coupling
was specific to the left hemisphere due to the majority of right-
handed participants (Supplementary Table S1) and hemispheric
motor dominance.

Motivation and Mood Symptoms Track Goal-Directed
Behavior and Reward-Evaluation

Previous research has suggested 2 symptom dimensions in
depression: anhedonia and anxiety (Drysdale et al. 2017; Siddiqi
et al. 2020). To investigate symptom dimensions in depression,
we performed a 2D factor analysis on all assessments in partici-
pants in a current MDE with at least mild depressive symptoms
(HAM-D ≥ 12). Factor analysis revealed 2 symptom dimensions:
motivation symptoms (encompassing anhedonia) and mood
symptoms (encompassing anxiety; Fig. 5A). Composite metrics
for motivation and mood symptoms were then related to goal-
directed behavior and reward-evaluation. Multiple linear regres-
sion analyses for dependent variables goal-directed behavior
and reward-evaluation with motivation and mood symptoms
as independent variables (Table 1) revealed that the composite
metric for motivation symptoms was negatively related to goal-
directed behavior and the composite metric for mood symptoms
was positively related to reward-evaluation. Post hoc correlation
analysis found a trend-level negative relationship between
motivation symptoms and goal-directed behavior (r(51) = −0.239,
P = 0.085) that was significant when controlling for mood
symptoms with a partial correlation (r(51) = −0.296, P = 0.033;
Fig. 5B). There was no relationship between mood symptoms
and goal-directed behavior (r(51) = 0.005, P = 0.974; Fig. 5C). Sim-
ilarly, there was no relationship between motivation symptoms
and reward-evaluation (r(51) = −0.032, P = 0.823; Fig. 5D), but
there was a trend-level positive relationship between mood
symptoms and reward-evaluation (r(51) = 0.233, P = 0.093) which
was significant when controlling for motivation symptoms
with a partial correlation (r(51) = 0.308, P = 0.026; Fig. 5E). The
partial correlation with the other symptom dimension was
used to resolve the collinearity between motivation and mood
symptoms (r(51) = 0.578, P < 0.0001). Together, these findings
suggest that reward-evaluation is elevated in the anxiety
subtype of depression, whereas goal-directed behavior might
be decreased in the anhedonia subtype.

Based on these significant relationships, we ran a partial
correlation between the strength of delta–beta coupling
and motivation symptoms controlling for mood symptoms
(r(51) = −0.229, P = 0.103) and between the strength of theta–
gamma coupling and mood symptoms controlling for moti-
vation symptoms (r(51) = 0.167, P = 0.237). These exploratory
analyses suggest that the symptom dimensions were more
directly related to behavior than to neural activity. However,

Table 1 Multiple linear regression analysis of goal-directed behavior
and reward-evaluation for composite metrics of motivation and
mood symptoms

Coefficient Estimate Std. Error t(50) P

DV: Goal-directed behavior

Motivation Sx −0.0132 0.0060 −2.190 0.033
∗

Mood Sx 0.0054 0.0042 1.294 0.202
DV: Reward-evaluation
Motivation Sx −0.7512 0.4959 −1.515 0.136

Mood Sx 0.7923 0.3461 2.290 0.026
∗

Two multiple linear regression analyses were run, one for each of the behavioral
metrics as the dependent variable (DV): goal-directed behavior and reward-
evaluation. The independent variables for these analyses were the composite
metrics of motivation and mood symptoms derived from factor analysis. N = 53.∗

P < 0.05. Sx = symptoms.

this might be expected as the coupling patterns was defined in
relation to behavior.

As an exploratory analysis, we hypothesized that symptoms
of anhedonia and symptoms of anxiety in particular would be
related to goal-directed behavior and reward-evaluation, respec-
tively. Thus, multiple linear regression was run controlling for
overall depression severity, and a trend-level relationship was
discovered for anhedonia (SHAPS-C) to goal-directed behavior
and anxiety (STAI-Y2, trait) to reward-evaluation (Table 2). These
findings suggest that clinical assessments addressing these spe-
cific symptoms may be sufficient to capture the majority of
the explained variance. In addition, it would be useful to know
if cross-frequency coupling serves as a biomarker for these
symptoms of depression. In an exploratory analysis, we dis-
covered a significant negative relationship between symptoms
of anhedonia and delta–beta coupling as well as a significant
positive relationship between symptoms of anxiety and theta–
gamma coupling (Table 2). Finally, we estimated the degree to
which discovered brain-behavior relationships were present as
a function of DSM categorization and found no significant dif-
ferences between group (Supplementary Fig. S5). This analysis
provided justification for using the dimensional approach that
conceptualized symptom presentation as a continuum across all
participants.

Discussion
Reward-based decision-making was hypothesized to recruit
similar modes of top–down control as in cognitive control
tasks. Thus, participants performed a streamlined version of
the S-EEfRT while high-density EEG was recorded. Individual
differences brain to behavior analysis was performed to under-
stand the neural basis of reward-evaluation and goal-directed
behavior. In order to increase interparticipant variability, the
participant pool included people diagnosed with current MDE,
a population known to show differences in reward-processing.
We found that reward-evaluation, the degree to which decision-
making was dependent on incentive, positively correlated
with the amplitude of theta oscillations in left lateral and

not significantly increase. Negative values were set to 0 as PAC can only be positive. (E). As a function of monetary incentive (high vs. low), the phase of delta oscillations
(2–3 Hz) in aPFC was coupled to the amplitude of beta oscillations (15–25 Hz) in L-M1 and posterior-midline electrodes. Dot represents P < 0.05 in topographic plots. (F)

Individual differences analysis (Pearson correlation) revealed that goal-directed behavior (%HARD) across all incentive levels was positively correlated with coupling
between delta phase in aPFC and beta amplitude in L-M1. Dots represent P < 0.05. The aPFC and L-M1 regions are depicted in black for amplitude modulation and in
green when associated with delta–beta coupling.
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Figure 5. Motivation and mood symptoms track goal-directed behavior and reward-evaluation. (A) 2D factor analysis of clinical assessments for participants in a current
major depressive episode (MDE) with at least mild depression severity (HAM-D ≥ 12). N = 38. Dotted line is a priori inclusion criteria set at 10% explained variance. (−) is

reverse-scored. Metrics that met inclusion criteria (∗) were normalized and combined into a composite metric for motivation (green) and mood (purple) symptoms (Sx).
(B–E) Correlation analysis (Pearson) for behavioral metrics, goal-directed behavior and reward-evaluation, with motivation and mood symptoms. ∼P < 0.1, ∗P < 0.05.
Dashed line is not significant. Shaded area is 95% confidence interval. See Methods for the acronyms used for each assessment subscore. Correlation analyses were
performed on participants that engaged reward-based decision-making processes (N = 53).

Table 2 Multiple linear regression analysis using specific symptom assessments for anhedonia and anxiety

Coefficient Estimate Std. Error t(50) P

DV: Goal-directed behavior
Anhedonia (SHAPS-C) −0.0077 0.0039 −1.980 0.053∼
Trait anxiety (STAI-Y2) −0.0054 0.0025 −0.021 0.983
Depression severity (HAM-D) 0.0026 0.0049 0.518 0.607
DV: Reward-evaluation
Anhedonia (SHAPS-C) −0.0455 0.3243 −0.140 0.889
Trait anxiety (STAI-Y2) 0.4140 0.2118 1.954 0.056∼
Depression severity (HAM-D) −0.5602 0.4111 −1.363 0.179
DV: Delta–beta coupling

Anhedonia (SHAPS-C) −0.0416 0.0186 −2.239 0.030
∗

Trait anxiety (STAI-Y2) 0.0169 0.0122 1.397 0.169
Depression severity (HAM-D) 0.0107 0.0236 0.451 0.654
DV: Theta–gamma coupling
Anhedonia (SHAPS-C) −0.0204 0.0350 −0.581 0.564

Trait anxiety (STAI-Y2) 0.0492 0.0228 2.151 0.036
∗

Depression severity (HAM-D) −0.0619 0.0444 −1.393 0.170

Two sets of multiple linear regression analyses were run, one set using behavioral metrics as the dependent variable (goal-directed behavior and reward-evaluation)
and one set using cross-frequency coupling (delta–beta coupling and theta–gamma coupling). Delta–beta coupling and goal-directed behavior are shaded in green given
their association in previous analysis, and theta–gamma coupling and reward-evaluation are shaded in purple. The independent variables for these analyses were

clinical assessments specific to anhedonia (SHAPS-C), anxiety (STAI-Y2, trait), and overall depression severity (HAM-D). N = 53.
∗

P < 0.05, ∼P < 0.10. The hypothesized
relationships are shared in gray and the font is bold.

midline frontal electrodes. Furthermore, coupling between
the phase of prefrontal theta oscillations and the amplitude
of gamma oscillations in right parieto-occipital electrodes
positively correlated with reward-evaluation. By comparison,
goal-directed behavior, or the willingness to exert effort to
obtain a reward, positively correlated with coupling between
the phase of prefrontal delta oscillations and the amplitude of

beta oscillations in left motor electrodes. Based on previous
research that found 2 prominent symptom dimensions in
depression, we used a data-driven factor analysis to derive 2
composite metrics: motivation and mood symptoms. We found
that motivation symptoms corresponded with a reduction in
goal-directed behavior and mood symptoms with an increase in
reward-evaluation. Together, these findings suggest that
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Figure 6. Delta–beta and theta–gamma coupling as distinct modes of cognitive control that become impaired in depression. (A) We propose a model by which the

amplitude of theta and gamma oscillations is modulated during perception including memory processes, and the amplitude of delta and beta oscillations is modulated
during action including decision-making. Arrows reflect top–down control via phase-amplitude coupling. Gamma oscillations depicted with a dashed line as we did
not find direct evidence of increased gamma amplitude. (B) Prefrontal cortex provides top–down control via cross-frequency coupling in 2 distinct modes. Delta–

beta coupling between prefrontal and motor cortex coordinates action during decision-making, and theta–gamma coupling between prefrontal and visual processing
regions guides perception including the evaluation of potential rewards. These cognitive control modes are differentially impacted by symptoms of depression with
increased theta–gamma coupling with symptoms of anxiety and decreased delta–beta coupling with symptoms of anhedonia.

prefrontal control signals over perceptual and motor regions
orchestrated via cross-frequency coupling play a role in imple-
menting dissociable components of reward-based decision-
making and that these constructs might become altered in
different dimensions of depression (Fig. 6).

Theta–gamma coupling plays a critical role in the sequencing
of information during the encoding and recall of long-term
(Heusser et al. 2016) and short-term (Bahramisharif et al. 2018)
memory. Here, we found that participants that modulated
behavior as a function of incentive value also showed increased
theta–gamma coupling as a function of incentive value. Thus,
the close alignment in these processes provides support that
theta–gamma coupling serves as the substrate for interpreting
the value of a reward and its associated cost (Pinner and
Cavanagh 2017; Gheza et al. 2019). This finding extends previous
research that has often focused on feedback-related frontal-
midline theta oscillations in reward learning (Hajihosseini and
Holroyd 2013; Rawls et al. 2020). Theta–gamma coupling and
theta amplitude displayed a similar relationship to behavior.
Although theta–gamma PAC necessitates sufficient signal-to-
noise in the theta signal, the reverse is not true. Because theta–
gamma coupling was found in inter-regional coupling analysis,
it is unlikely that prefrontal-posterior theta–gamma coupling is
reducible to an artifact of the frontal theta oscillation (Jensen
et al. 2016). Inter-regional coupling analysis found that theta–
gamma coupling was specific to the right parieto-occipital
cortex. In similar fashion, a recent study that investigated
coupling between the phase of theta oscillation in anterior
prefrontal electrodes to posterior gamma amplitude during
a working memory task found that coupling was specifically
increased with the right parieto-occipital electrodes (Berger et al.
2019). Thus, we speculate that asymmetries in theta–gamma
coupling may reflect hemispheric specialization that is task
specific.

Given the confluence of findings that theta–gamma coupling
plays a role in the integration of higher order representations
from lower order information, we propose that theta–gamma

coupling between prefrontal and sensory regions plays a general
role in the integration of higher order representations often
recruiting the memory system (i.e., hippocampal memory net-
work (Tort et al. 2009, Colgin 2015, Schumacher et al. 2016)) or
perceived value (i.e., orbitofrontal cortex (Gallagher et al. 1999,
Padoa-Schioppa and Assad 2006)). In support of this model, a
recent study found that theta–gamma patterned stimulation
increased functional connectivity within the distributed hip-
pocampal memory network (Hermiller et al. 2020). Furthermore,
theta–gamma waveforms delivered using tACS to prefrontal cor-
tex were found to enhance memory-dependent behavior during
cognitive control tasks (Alekseichuk et al. 2016; Riddle et al.
2021).

In addition to the link between theta–gamma coupling and
reward-evaluation, we found evidence that delta–beta coupling
between prefrontal and motor cortex is increased with goal-
directed behavior. Our effect was highly specific to the canonical
beta range centered on 20 Hz in motor cortex that is found
in motor-related tasks: often positively correlated to response
inhibition (Zhang et al. 2008) and increased when top–down con-
trol is required to mediate response selection (Engel and Fries
2010; Tzagarakis et al. 2010). Previous work found that the ampli-
tude of beta oscillations over motor cortex was adjusted every
delta phase as a bimanual decision was prepared (Wyart et al.
2012). We previously found that delta–beta coupling increased
when decision-making required greater response inhibition as
the appropriate motor response was selected (Riddle, Vogel-
sang et al. 2020, Riddle et al. 2021). Beyond the simple engage-
ment of beta-frequency response inhibition in motor cortex,
delta–beta coupling between prefrontal to motor cortex may
reflect the translation of abstract goals into concrete action.
The lateral prefrontal cortex is organized hierarchically such
that more anterior regions process increasing abstract informa-
tion (Badre and D’Esposito 2007; Badre and Nee 2018). However,
only recently was delta–beta coupling demonstrated to play a
causal role in processing hierarchically nested task rules (Riddle,
Vogelsang et al. 2020, Riddle et al. 2021). The present study
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extends the cognitive domain by which delta–beta coupling
between prefrontal and motor cortex is recruited into reward-
based decision-making. Participants with the strongest delta–
beta coupling were more likely to choose the more physically
demanding task. Thus, delta–beta coupling might index the
degree to which abstract goals override action plans that require
less effort.

Given the heterogeneity of symptom presentation in depres-
sion, dimension-based approaches represent a promising strat-
egy to better understand the biological and psychological basis
of depression (Nusslock and Alloy 2017). After identifying neu-
ral correlates for the behavioral metrics of interest, we were
interested in recapitulating two dimensions of symptoms of
depression that have been recently described (Drysdale et al.
2017; Siddiqi et al. 2020). The first dimension, described as anxio-
somatic/anxious depression, refers to the tendency for anxious
rumination and emotional reactivity. The second dimension,
described as anhedonic/dysphoric depression, corresponds to
deficits in motivation to seek out rewarding experience and
an inability to experience pleasure. These dimensions were
shown to correspond to 2 distinct prefrontal control networks:
medial prefrontal to ventral striatum with anxiety and lateral
prefrontal to dorsal striatum with anhedonia (Drysdale et al.
2017, Siddiqi et al. 2020). In participants with a current MDE,
our 2D factor analysis derived symptom dimensions related to
increased mood disturbance (encompassing symptoms of anx-
iety) and increased motivation problems (encompassing symp-
toms of anhedonia). Mood symptoms were positively correlated
with greater reward-evaluation, which was in turn associated
with greater amplitude of frontal theta oscillations. Consistent
with this association, frontal theta oscillations are increased
in anxious rumination (Andersen et al. 2009) and may reflect
increased need for cognitive control (Cavanagh and Shackman
2015). By contrast, motivation symptoms were negatively cor-
related with goal-directed behavior consistent with previous
research using the EEfRT that found a negative relationship with
symptoms of anhedonia (Treadway et al. 2009). Furthermore,
categorization based on depressive status alone was not suffi-
cient to meaningfully capture individual differences, and this
finding provides support for the dimensional approach used
here, which was inspired by the Research Domain Criteria (Insel
et al. 2010).

As in any scientific study, our work has several limitations.
First, the discovery of theta–gamma and delta–beta coupling
was not pre-registered and this study is observational. Although
these coupling patterns are consistent with our previous
work on cognitive control (Riddle et al. 2021), our analysis
was correlation-based and thus was inherently susceptible
to Type I statistical errors. In addition, the direct relationship
between symptom severity and neural activity exhibited only
a small effect size. Thus, these findings should be viewed as
preliminary and replication efforts should be initiated. Future
studies will be pre-registered and utilize brain stimulation to
validate brain-behavior relationships using cross-frequency
tACS (Alekseichuk et al. 2016; Bramson et al. 2020; Turi et al. 2020;
Riddle et al. 2021) or online patterned transcranial magnetic
stimulation (Hermiller et al. 2020). Second, a sizable fraction
of participants did not engage reward-based decision-making,
which suggests that either titration of task difficulty failed
in some participants or that some participants engaged in
suboptimal strategies. Future investigation should use closed-
loop online titration by modulating incentive and physical effort
to achieve <85% HARD decision in all participants. In addition,
optimal goal-directed behavior might be better quantified as

a function of ongoing physical exhaustion (success rate) and
incentive level. Third, the spatial resolution of high-density EEG
is limited and, thus, we cannot definitively conclude that signals
recorded in prefrontal, motor, parieto-occipital electrodes do,
in fact, originate from the suggested cortex. Nonetheless, our
preprocessing leveraged the spherical assumption of electric
fields and ran global average re-referencing. Relatedly, the
dissociable or common origin of delta and theta oscillations
in prefrontal cortex is currently unknown. Future studies
should utilize invasive recording or concurrent stimulation
with neuroimaging. Fourth, participants in this study did
not have “severe” symptoms of depression. Due to possible
nonlinearities, these findings may not generalize. However, our
work recapitulated symptom dimensions that were derived
from participants with severe depression (Drysdale et al.
2017).

Clinical interventions can personalize which neural cir-
cuits to target and the frequency at which to deliver brain
stimulation based on presentation along known symptom
dimensions. For example, depressed patients with anhe-
donia may benefit from cross-frequency tACS to lateral
prefrontal and motor cortex in delta–beta; whereas depressed
patients with anxiety may benefit from stimulation that
targets theta–gamma oscillations. Given that anxiolytic med-
ications dampen theta oscillations (Suetsugi et al. 1998),
techniques that aim to enhance inhibitory alpha oscillations
may suppress pathological theta oscillations, as alpha and
theta oscillations serve antagonistic roles (Riddle, Vogelsang
et al. 2020). In conclusion, classification of dimensions of
depression is essential to advancing clinical intervention as
different subtypes may have distinct neural and behavioral
phenotypes.
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